Saturday, October 5, 2019
Comparative critical analysis Essay Example | Topics and Well Written Essays - 1500 words
Comparative critical analysis - Essay Example An analysis of this fact explains that it is of the essence that the teaching and learning processed be set in a manner that will help unfold the mental abilities of the learners. Since learning results in different forms of change, it is fundamental that the learning process be created in a way that will help the children acquire a new skill. A developed learning process is also directly linked to cognitive, social as well as affective development (Daniels, 1996). In line with this argument, the teaching and the education processes need to be practical in such a way that will lead to deeper insights on the mind of the children. Through learning, the mind of the children is helped to develop. As seen in the research conducted by Donaldson (1978). Through the process of learning children adopt and learn new ways of mental functioning. In the course of learning for example, the child may learn aspects touching in culture and language and manipulate the same to developed new ways of thinking and self-regulation (Wood, 1998). Through the language structures and the pragmatic concept of the same, children in turn form new facets that shape their minds (Wood, 1998). From this perspective, it is evident that the mind of the child indeed determines the way in which they learn, think, and perceive things in their surroundings. For learning to take place in the case of the children, the entire learning and teaching process has to be active in approach. Vosniadou (2001) indicates that it is only in an active teaching and learning process that active learning takes place as well as the mutant development of children. Through an active learning process, it is indicated that the minds of the children are stimulated; thus, allows for a mastery of contents and a complete transformation of the general development of child since the building blocks of the mind have been
Friday, October 4, 2019
The Color Purple. Applying Adult Learning Theory Through Character Assignment
The Color Purple. Applying Adult Learning Theory Through Character Analysis - Assignment Example Description of the characterââ¬â¢s learning The film identifies its narrator, Celie, as an uneducated woman who is oppressed by her stepfather who rapes her, makes her pregnant and then steals her children. She writes letters to communicate to God but she maintains a passive role in her life as she submits to abuses under her stepfather and later from her husband. Her learning develops from a naà ¯ve uneducated woman to an informed woman who knows of herself worth and can take a stand to defend her position and ideas. She initially assumed little control over her life and environment and a quiet and invisible position for survival, as is evident in her passive position towards her abusive stepfather and her husband. Celieââ¬â¢s learns through her interaction with Shug Avery, a music icon who is beautiful and have potentials to achieve her objectives. Avery stimulates Celieââ¬â¢s development and allows Celie to unwind her history to gain sexual, spiritual and voice empowerment. Avery also succeeds in exposing Celie to ne w perspectives from which Celie can develop new insights about live. An example of such exposure is in religion in which Avery exposes Celie to a new form of God who is not traditional and one who treats people as equals regardless of their gender. Avery also helps Celie to discover Nettieââ¬â¢s previous letters. The letters informs her of her history and empowers her to comprehend her thoughts and emotions towards independence and she is able to protest against her husbandââ¬â¢s oppressive acts. Celie also learns, through her interaction with Avery, of self-actualization potential and succeeds in developing a sewing enterprise from an assumed position of a part time activity for women who only perform domestic roles, to a profitable and established business that also gains her financial independence from her husband (Walker). The scope of Celieââ¬â¢s learning identifies the role of a moderator as Celie adopts an active learning approach in the process. In her interaction w ith Avery, Avery does not instruct Celie on what to do, neither does she tell her how to conduct herself, but the two women undergo the learning process together. Avery, for example, prod Celieââ¬â¢s past that allows Celie to develop spiritual and sexual aspects. Averyââ¬â¢s narrations also empower Celie and with the help of Avery, Celie discovers Nettieââ¬â¢s letters that lead Celie to new knowledge about her past and her children. Interaction with Avery also empowers Celie to self-actualization and the change in perspectives and capacity occurs through Celieââ¬â¢s active interaction with Averyââ¬â¢s world and her experience to transform her life and perception on life (Walker). Factors that caused the character to learn The film identifies interaction between Celie and Avery as the immediate reason for Celieââ¬â¢s learning. Factors into the learning can however be explored through Mezirowââ¬â¢s transformational learning theory and through Knowlesââ¬â¢ theor etical based assumptions on adult learning. Knowlesââ¬â¢ assumptions explain motivational factors as a cause of Celieââ¬â¢s learning. Knowles explains that learning is continuous and can occur at any age, aspect that allows Celie to learn at an elderly stage. Her ability to direct herself in learning, subject to Knowles self-concept assumption, is one of the factors that empowered Celie to learn from her interaction w
Thursday, October 3, 2019
Outline and Speech Essay Example for Free
Outline and Speech Essay My life before becoming a non-traditional student was very typical and average. At 34, I was a mother of two kids and was trying to juggle between my family and work life. I did not have a particularly hard time between the two and even felt dissatisfied about my professional life. I had been working as a salon manager for about 15 years and I was also into retail management at that time. For some people, this can be regarded as a big achievement. However, I was not contented at all and it got to the point where I felt that I had already reached the end. There was no room for growth and there were not much opportunity to make more money, which I needed to support my family. I toyed with the idea of going back to school for a very long time. I felt that my life was too complicated for me to go back. I had a family with two children to think about and it is important for me to not miss any quality time with them. Although I knew that there were many other non-traditional students out there and that the idea of going back to school is not new anymore, I still had my doubts and I thought of my decision for quite some time. I did think about the advantages for me and the negative effects it would bring mainly to my family. I also had questions regarding the cost of receiving a degree, as well as the financial aid options that are available for me. I was also very conscious of the fact that this generation is very different from what I knew when I was still in school. Young people nowadays are very liberated and have many bright ideas, which would help them excel in their fields. As for me, I was this middle-aged woman trying to fit in in this new world. See more: what is essay format However, this feeling did not last long because I discovered that I was not the only non-traditional student in the school and that the school is very accommodating to students like us. The younger students are liberated but this fact also helped because they are more open to things like non-traditional students. The most important factor that led to my decision of going back to school was my thirst for more and for better things for my family. I had my second daughter in December of 2005 and I was able to take an extended leave of one year after that pregnancy. When I went back to work, I felt something different. I had manager hours, which is very convenient for me and the pay was not that bad either. However, I was bursting with so much drive, ambition, and motivation and I felt that I had so much more to offer than just become a salon manager all my life. In 2007, after 15 years of working, I finally had the courage to leave my job and go back to school. To say that I was nervous is an understatement. I was giddy, excited, and scared all at the same time. I did not know what to expect after 16 years of being out of school. Sure, I can read about the latest news on the Internet and even see some of what is going on but experiencing it first-hand is very different. Still, the thing that made me survive and take it all in was the fact that this decision while it can affect my family, it will ultimately be beneficial for me and nobody elseââ¬â¢s. I was doing it for me because I wanted to achieve greater things in life. I have a very busy life as a non-traditional student at this time. I am now in my third semester here at NSU and I believe that I am doing great in terms of school work. Contrary to what I feared before, I have no problems handling my personal and family life. Both of my kids are very active socially and academically and I make sure that I still have the time to guide them with their activities. After finishing my courses, I believe that I will be better equipped and prepared to take greater responsibilities. I would be more confident that my career path would not be a dead-end like before. I would therefore like to state that this decision of becoming a non-traditional student has proved to be beneficial to me and to the people around me.
Wednesday, October 2, 2019
Effects of Exercise on the Human Body
Effects of Exercise on the Human Body Exercise represents one the highest levels of extreme stresses to which the body can be exposed. Exercise physiology is the study of the function of the human body during various acute and chronic exercise conditions. These effects are significant during both short, high intensity exercise as well as with prolonged strenuous exercise such as done in endurance sports like marathons, ultramarathons, and road bicycle racing. In exercise, the liver generates extra glucose, while increased cardiovascular activity by the heart, and respiration by the lungs, provides an increased supply of oxygen. When exercise is very prolonged and strenuous, a decline, however, can occur in blood levels of glucose. In some individuals, this might even cause hypoglycemia and hypoxemia. There can also be cognitive and physical impairments due to dehydration. Another risk is low plasma sodium blood levels. Prolonged exercise is made possible by the human thermoregulation capacity to remove exercise waste hea t by sweat evaporation. This capacity evolved to enable early humans after many hours of persistence hunting to exhaust game animals that cannot remove so effectively exercise heat from their body. In general, the exercise-related measurements established for women follow the same general principles as those established for men, except for the quantitative differences caused by differences in body size, body composition, and levels of testosterone. In women, the values of muscle strength, pulmonary ventilation, and cardiac output (all variables related with muscle mass) are generally 60-75% of the exercise physiology values recorded in men. When measured in terms of strength per square centimeter, the female muscle can achieve the same force of contraction as that of a male. The functions of muscle tissues assume roles in homeostasis, as follows: Excitability Property of receiving and responding to stimuli such as the following: Neurotransmitters: Acetylcholine (ACh) stimulates skeletal muscle to contract, electrical stimuli: Applying electrical stimuli between cardiac and smooth muscle cells causes the muscles to contract, Applying a shock to skeletal muscle causes contraction, Hormonal stimuli: Oxytocin stimulates smooth muscle in the uterus to contract during labor.Contractility Ability to shorten. Extensibility Ability to stretch without damageElasticity Ability to return to original shape after extensionThrough contraction, muscle provides motion of the body (skeletal muscle), motion of blood (cardiac muscle), and motion of hollow organs such as the uterus, esophagus, stomach, intestines, and bladder (smooth muscle).Muscle tissue also helps maintain posture and produce heat. A large amount of body heat is produced by metabolism and by muscle con traction. Muscle contraction during shivering warms the body. Skeletal muscle consists of fibers (cells). These cells are up to 100 Ã µm in diameter and often are as long as the muscle. Each contains sarcoplasm (cytoplasm) and multiple peripheral nuclei per fiber. Skeletal muscle is actually formed by the fusion of hundreds of embryonic cells. Other cell structures include the following:Each fiber is covered by a sarcolemma (plasma membrane). The sarcoplasmic reticulum (smooth endoplasmic reticulum) stores calcium, which is released into the sarcoplasm during muscle contraction. Transverse tubules (T tubules), which are extensions of the sarcolemma that penetrate cells, transmit electrical impulses from the sarcolemma inward, so electrical impulses penetrate deeply into the cell. Besides conducting electricity along their walls, T tubules contain extracellular fluid rich in glucose and oxygen.The sarcoplasm of fiber is rich in glycogen (glucose polymer) granules and myoglobin (oxygen-storing protein). It also is rich in mitochondria. Each fibe r contains hundreds to thousands of rodlike myofibrils, which are bundles of thin and thick protein chains termed myofilaments. From a cross-sectional view of a myofibril, each thick filament is surrounded by a hexagonal array of 6 thin filaments. Each thin filament is surrounded by a triangular array of thick filaments.myofilaments are composed of 3 proteins: actin, tropomyosin, and troponin. Thick myofilaments consist of bundles of approximately 200 myosin molecules. Myosin molecules look like double-headed golf clubs (both heads at the same end). The heads of the golf clubs are called myosin heads; they are also called cross-bridges because they link thick and thin filaments during contraction. They contain actin andadenosine triphosphate (ATP) binding sites. Myosin heads project out from the thick filaments, allowing them to bind to the thin filaments during contraction. Actin is a long chain of multiple globular proteins, similar in shape to kidney beans. Each globular subunit contains a myosin-binding site. Tropomyosin is a long strand of protein that covers the myosin-binding sites on actin when the muscle is relaxed. Troponin is a polypeptide complex that binds to tropomyosin, helping to position it over the myosin-binding sites on actin. During muscle contraction, calcium binds troponin, which causes tropomyosin to roll off of the myosin binding sites on actin. A muscle action potential travels over sarcolemma and enters the T tubules, causing the sarcoplasmic reticulum to release calcium into the sarcoplasm. This triggers the contractile process.Myosin cross-bridges pull on the actin myofilaments, causing the thin myofilaments of a sarcomere to slide toward the centers of the H zones.Deep fascia is a broad band of dense irregular connective tissue beneath and around muscle and organs. Deep fascia is different from superficial fascia, which is loose areolar connective tissue.Other connective-tissue components (all are extensions of deep fascia) include epimysium, which covers the entire muscle; perimysium, which penetrates into muscle and surrounds bundles of fibers called fascicles; and endomysium, which is delicate, barely visible, loose areolar tissue covering individual fibers (ie, individual cells).Tendons and aponeuroses are tough extensions of epimysium, perimysium, and endomysium. Tendons and aponeuroses are made of dense regular co nnective tissue and attach the muscle to bone or other muscle. Aponeuroses are broad, flat tendons. Tendon sheaths contain synovial fluid and enclose certain tendons. Tendon sheaths allow tendons to slide back and forth next to each other with lower friction. Tenosynovitis is inflammation of the tendon sheaths and tendons, especially those of the wrists, shoulders, and elbows. Tendons are not contractile and not very stretchy; furthermore, they are not very vascular and they heal poorly. Nerves convey impulses for muscular contraction. Nerves are bundles of nerve cell processes. Each nerve cell process (ie, axon) divides at its tip into a few to 10,000 branches called telodendria. At the end of each of these branches is an axon terminal that is rich in neurotransmitters.Blood provides nutrients and oxygen for contraction. An artery and a vein usually accompany a nerve that penetrates skeletal muscle. Arteries in muscles dilate during active muscular activity, thus increasing the supply of oxygen and glucose.A motor nerve is a bundle of axons that conducts nerve impulses away from the brain or spinal cord toward muscles. Each axon transmits an action potential (ie, nerve impulse), which is a burst of electricity. The nerve impulse travels along the axons at a steady rate, like fire travels along a fuse; however, nerve impulses travel extremely fast. Each axon has 4-2000 or more branches (ie, telodendria), with an average of 150 telodendria. Each separate branch suppli es a separate muscle cell. Thus, if an axon has 10 branches, it supplies 10 muscle fibers. Small motor units are for fine control of muscles; large motor units are for muscles that do not require such fine control.The neuromuscular junction is made of an axon terminal and the portion of the muscle fiber sarcolemma it nearly touches (called the motor endplate). The neurotransmitter released at the neuromuscular junction in skeletal muscle is ACh. The motor endplate is rich in thousands of ACh receptors; the receptors are integral proteins containing binding sites for ACh and sodium channels. Nerve impulse (action potential) reaches the axon terminal, which triggers calcium influx into the axon terminal.Calcium influx causes synaptic vesicles to release ACh via exocytosis. ACh diffuses across synaptic cleft.ACh binds to theACh receptor on the sarcolemma. Succinylcholine, a drug used to induce paralysis during surgery, binds to ACh receptors more tightly than ACh. Succinylcholine initially causes some depolarization, but then itbinds to the receptor, preventing ACh from binding. Therefore, it blocks the muscles stimulation by ACh, causing paralysis. Another drug that acts in a similar fashion is curare. These drugs do not cause pain relief or unconsciousness; thus, they are combined with other drugs during surgery. When ACh binds the receptor, it opens chemically regulated ion channels, which are sodium channels through the receptor molecule. Sodium, which is in high concentration outside cells and in low concentration inside cells, rushes into the cell through the channels.The cell, whose resting membrane potential along the inside of the membrane is negative when comparedwith the outside of the membrane, becomes positively charged along the inside of the membrane when sodium (a positive ion) rushes in. This change from a negative charge to a positive charge along the inner membrane is termed depolarization. The depolarization of one region of the sarcolemma (the motor endplate) initiates an action potential, which is a propagating wave of depolarization that travels (propagates) along the sarcolemma. Regions of membrane that become depolarized rapidly restore their proper ionic concentrations along their inner and outer surfaces in a process termed repolarization. (This process of depolarization, propagation, and repolarization is similar to dominoes that topple each other but also spring back into the upright position shortly afterward.)The action potential also propagates along the membrane lining the T tubules entering the cell. This action potential traveling along the T tubules causes the sarcoplasmic reticulum to release calcium into sarcoplasm.Calcium binds with troponin, causing it to pull on tropomyosin to change its or ientation, exposing myosin-binding sites on actin. An ATPase, which also functions as a myosin cross-bridging protein, splits ATP into adenosine diphosphate (ADP) + phosphate (P) in the previous contraction cycle. This energizes the myosin head. The energized myosin head, or cross-bridge, combines with myosin-binding sites on actin. Power stroke occurs. The attachment of the energized cross-bridge triggers a pivoting motion (ie, power stroke) of the myosin head. During the power stroke, ADP and P are released from the myosin cross-bridge. The power stroke causes thin actinmyofilaments to slide past thick myosin myofilaments toward the center of the A bands.ATP attaches to the myosin head again, allowing it to detach from actin. (In rigor mortis, an ATP deficiency occurs. Cross-bridges remain, and the muscles are rigid.)ATP is broken down to ADP and P, which cocks the myosin head again, preparing it to perform another power stroke if needed. Repeated detachment and reattachment of the cross-bridges results in shortening without much increase in tension during the shortening phase (isotonic contraction) or results in increased tension without shortening (isometric contraction).Release of the enzyme acetylcholinesterasein the neuromuscular junction destroys ACh and stops the generation of a muscle action potential. Calcium is taken back up (resequestered) in the sarcoplasmic reticulum, and myosin cross-bridges separate. ATP is required to separate myosin-actin cross-bridges. The muscle fiber resumes its resting state. The chemical energy that fuels muscular activities is ATP. For the first 5 or 6 seconds of muscle power, muscular activity can depend on the ATP that is already present in the muscle cells. Beyond this time, new amounts of ATP must be formed to enable the activation of muscular contractions that are needed to support longer and more vigorous physical activities. For activities that require a quick burst of energy that cannot be supplied by the ATP present in the muscle cells, the next 10-15 seconds of muscle power can be provided through the bodys use of the phosphagen system, which uses a substance called creatine phosphate to recycle ADP into ATP.4 For longer and more intense periods of physical activity, the body must rely on systems that break down the sugars (glucose) to produce ATP. The complete breakdown of glucose occurs in 2 ways: through anaerobic respiration (does not use oxygen) and through aerobic respiration (occurs in the presence of oxygen). The anaerobic use of gluco se to form ATP occurs as the body increases its muscle use beyond the capability of the phosphagen system to supply energy. In particular, the glycogen lactic acid system, through its anaerobic breakdown of glucose, provides approximately 30-40 seconds more of maximal muscle activity. For this system, each glucose molecule is split into 2 pyruvic acid molecules, and energy is released to form several ATP molecules, providing the extra energy. Then, the pyruvic acid partially breaks down further to produce lactic acid. If the lactic acid is allowed to accumulate in the muscle, one experiences muscle fatigue. At this point, the aerobic system must activate.The aerobic system in the body is used for sports that require an extensive and enduring expenditure of energy, such as a marathon race. Endurance sports absolutely require aerobic energy. A large amount of ATP must be provided to muscles to sustain the muscle power needed to perform such events without an excessive production of la ctic acid. This can only be accomplished when oxygen in the body is used to break down the pyruvic acid (that was produced anaerobically) into carbon dioxide, water, and energy by way of a very complex series of reactions known as the citric acid cycle. This cycle supports muscle usage for as long as the nutrients in the body last. The breakdown of pyruvic acid requires oxygen and slows or eliminates the accumulation of lactic acid. In summary, the 3 different muscle metabolic systems that supply the energy required for various activities are as follows: Phosphagen system (for 10- to 15-sec bursts of energy)Glycogen lactic acid system (for another 30-40 sec of energy)Aerobic system (provides a great deal of energy that is only limited by the bodys ability to supply oxygen and other important nutrients) Many sports require the use of a combination of these metabolic systems. By considering the vigor of a sports activity and its duration, one can estimate very closely which of the ene rgy systems are used for each activity. During muscular exercise, blood vessels in muscles dilate and blood flow is increased in order to increase the available oxygen supply. Up to a point, the available oxygen is sufficient to meet the energy needs of the body. However, when muscular exertion is very great, oxygen cannot be supplied to muscle fibers fast enough, and the aerobic breakdown of pyruvic acid cannot produce all the ATP required for further muscle contraction. During such periods, additional ATP is generated by anaerobic glycolysis. In the process, most of the pyruvic acid produced is converted to lactic acid. Although approximately 80% of the lactic acid diffuses from the skeletal muscles and is transported to the liver for conversion back to glucose or glycogen, some lactic acid accumulates in muscle tissue, making muscle contraction painful and causing fatigue. Ultimately, once adequate oxygen is available, lactic acid must be catabolized completely into carbon dioxide and water. After exercise has stopped, extra oxygen is required to metabolize lactic acid; to replenish ATP, phosphocreatine, and glycogen; and to replace (pay back) any oxygen that has been borrowed from hemoglobin, myoglobin (an iron-containing substance similar to hemoglobin that is found in muscle fibers), air in the lungs, and body fluids. The additional oxygen that must be taken into the body after vigorous exercise to restore all systems to their normal states is called oxygen debt. The debt is paid back by labored breathing that continues after exercise has stopped. Thus, the accumulation of lactic acid causes hard breathing and sufficient discomfort to stop muscle activity until homeostasis is restored.5 Eventually, muscle glycogen must also be restored. Restoration of muscle glycogen is accomplished through diet and may take several days, depending on the intensity of exercise. The maximum rate of oxygen consumption during the aerobic catabolism of pyruvic acid is called maximal oxygen uptake. Maximal oxygen uptake is determined by sex (higher in males), age (highest at approximately age 20 y), and size (increases with body size). Highly trained athletes can have maximal oxygen uptakes that are twice that of average people, probably owing to a combination of genetics and training. As a result, highly trained athletes are capable of greater muscular activity without increasing their lactic acid production and have lower oxygen debts, which is why they do not become short of breath as readily as untrained individuals. The best examples of light exercise are walking and light jogging. The muscles that are recruited during this type of exercise are those that contain a large amount of type I muscle cells, and, because these cells have a good blood supply, it is easy for fuels and oxygen to travel to the muscle. ATP consumption makes ADP available for new ATP synthesis. The presence of ADP (and the resulting synthesis of ATP) simulates the movement of hydrogen (H+) into the mitochondria; this, in turn, reduces the proton gradient and thus stimulates electron transport. The hydrogen on the reduced form of nicotinamide adenine dinucleotide (NADH) is used up, nicotinamide adenine dinucleotide (NAD) becomes available, and fatty acids and glucose are oxidized. Incidentally, the calcium released during contraction stimulates the enzymes in the Krebs cycle and stimulates the movement of the glucose transporter 4 (GLUT-4) from inside of the muscle cell to the cell membrane. Both these exercise-induced respon ses augment the elevation in fuel oxidation caused by the increase in ATP consumption. An increase in the pace of running simply results in an increased rate of fuel consumption, an increased fatty acid release, and, therefore, an increase in the rate of muscle fatty acid oxidation. However, if the intensity of the exercise increases even further, a stage is reached in which the rate of fatty acid oxidation becomes limited. The reasons why the rate of fatty acid oxidation reaches a maximum are not clear, but it is possible that the enzymes in the beta-oxidation pathway are saturated (ie, they reach a stage in which their maximal velocity [Vmax] is less than the rate of acetyl-coenzyme A [acetyl-CoA] consumption in the Krebs cycle). Alternatively, it may be that the availability of carnitine (the chemical required to transport the fatty acids into the mitochondria) becomes limited. Whatever the reason, the consequence is that as the pace rises, the demand for acetyl-CoA cannot be met by fatty acid oxidation alone. The accumulation of acetyl-CoA that was so effective at inhibiting the oxidation of glucose is no longer present, so pyruvate dehydrogenase starts working again and pyruvate is converted into acetyl-CoA. In other words, more of the glucose that enters the muscle cell is oxidized fully to carbon dioxide. Therefore, the energy used during moderate exercise is derived from a mixture of fatty acid and glucose oxidation. As the intensity of the exercise increases even further (ie, running at the pace of middle-distance races), the rate at which the muscles can extract glucose from the blood becomes limited. In other words, the rate of glucose transport reaches Vmax, either because the blood cannot supply the glucose fast enough or the number of GLUT-4s becomes limited. ATP generation cannot be serviced completely by exogenous fuels, and ATP levels decrease. Not only does this stimulate phosphofructokinase, it also stimulates glycogen phosphorylase. This me ans that glycogen stored within the muscle cells is broken down to provide glucose. Therefore, the fuel mix during strenuous exercise is composed of contributions from blood-borne glucose and fatty acids and from endogenously stored glycogen.Being fit (biochemically speaking) means that the individual has a well-developed cardiovascular system that can efficiently supply nutrients and oxygen to the muscles. Fit people have muscle cells that are well perfused with capillaries (ie, they have a good muscle blood supply). Their muscle cells also have a large number of mitochondria, and those mitochondria have a high activity of Krebs cycle enzymes, electron transport carriers, and oxidation enzymes. Individuals who are unfit must endure the consequences of a poorer blood supply, fewer mitochondria, less electron transport units, a lower activity of the Krebs cycle, and poorer activity of beta-oxidation enzymes. To generate ATP in the mitochondria, a steady supply of fuel and oxygen and decent activity of the oxidizing enzymes and carriers are needed. If any of these components are lacking, the rate at which ATP can be produced by mitochondria is compromised. Under these circumstances, the production of ATP by aerobic means is not sufficient to provide the muscles with sufficient ATP to sustain contractions. The result is anaerobic ATP generation using glycolysis. Increasing the flux through glycolysis but not increasing the oxidative consumption of the resulting pyruvate increases the production of lactate. The purpose of respiration is to provide oxygen to the tissues and to remove carbon dioxide from the tissues. To accomplish this, 4 major events must be regulated, as follows: Pulmonary ventilation. Diffusion of oxygen and carbon dioxide between the alveoli and the blood, Transport of oxygen and carbon dioxide in the blood and body fluids and to and from the cells, Regulation of ventilation and other aspects of respiration: Exercise causes these factors to change, but the body is designed to maintain homeostasisWhen one goes from a state of rest to a state of maximal intensity of exercise, oxygen consumption, carbon dioxide formation, and total pulmonary and alveolar ventilation increase by approximately 20-fold. A linear relationship exists between oxygen consumption and ventilation. At maximal exercise, pulmonary ventilation is 100-110 L/min, whereas maximal breathing capacity is 150-170 L/min. Thus, the maximal breathing capacity is approximately 50% greater than the actual pulmon ary ventilation during maximal exercise. This extra ventilation provides an element of safety that can be called on if the situation demands it (eg, at high altitudes, under hot conditions, abnormality in the respiratory system). Therefore, the respiratory system itself is not usually the most limiting factor in the delivery of oxygen to the muscles during maximal muscle aerobic metabolism. VO2 max is the rate of oxygen consumption under maximal aerobic metabolism. This rate in short-term studies is found to increase only 10% with the effect of training. However, that of a person who runs in marathons is 45% greater than that of an untrained person. This is believed to be partly genetically determined (eg, stronger respiratory muscles, larger chest size in relation to body size) and partly due to long-term training. Oxygen diffusing capacity is a measure of the rate at which oxygen can diffuse from the alveoli into the blood. An increase in diffusing capacity is observed in a state of maximal exercise. This results from the fact that blood flow through many of the pulmonary capillaries is sluggish in the resting state. In exercise, increased blood flow through the lungs causes all of the pulmonary capillaries to be perfused at their maximal level, providing a greater surface area through which oxygen can diffuse into the pulmonary capillary blood. Athletes who require greater amounts of oxygen per minute have been found to have higher diffusing capacities, but the exact reason why is not yet known. Although one would expect the oxygen pressure of arterial blood to decrease during strenuous exercise and carbon dioxide pressure of venous blood to increase far above normal, this is not the case. Both of these values remain close to normal. Stimulatory impulses from higher centers of the brain and from joint and muscle proprioceptive stimulatory reflexes account for the nervous stimulation of the respiratory and vasomotor center that provides almost exactly the pr oper increase in pulmonary ventilation to keep the blood respiratory gases almost normal. If nervous signals are too strong or weak, chemical factors bring about the final adjustment in respiration that is required to maintain homeostasis. Regular exercise makes the cardiovascular system more efficient at pumping blood and delivering oxygen to the exercise muscles. Releases of adrenaline and lactic acid into the blood result in an increase of the heart rate (HR). Basic definitions of terms are as follows:VO2 equals cardiac output times oxygen uptake necessary to supply oxygen to muscles. The Fick equation is the basis for determination of VO2. Exercises increase some of the different components of the cardiovascular system, such as stroke volume (SV), cardiac output, systolic blood pressure (BP), and mean arterial pressure. A greater percentage of the cardiac output goes to the exercising muscles. At rest, muscles receive approximately 20% of the total blood flow, but during exercise, the blood flow to muscles increases to 80-85%. To meet the metabolic demands of skeletal muscle during exercise, 2 major adjustments to blood flow must occur. First, cardiac output from the heart must increase. Second, blood flow from ina ctive organs and tissues must be redistributed to active skeletal muscle. Generally, the longer the duration of exercise, the greater the role the cardiovascular system plays in metabolism and performance during the exercise bout. An example would be the 100-meter sprint (little or no cardiovascular involvement) versus a marathon (maximal cardiovascular involvement). The cardiovascular system helps transport oxygen and nutrients to tissues, transport carbon dioxide and other metabolites to the lungs and kidneys, and distribute hormones throughout the body. The cardiovascular system also assists with thermoregulation.The pumping of blood by the heart requires the following 2 mechanisms to be efficient:Alternate periods of relaxation and contraction of the atria and ventriclesCoordinated opening and closing of the heart valves for unidirectional flow of blood The cardiac cycle is divided into 2 phases: ventricular diastole and ventricular systole.This phase begins with the opening of the atrioventricular (AV) valves. The mitral valve (located between the left atrium and left ventricle) opens when the left ventricular pressure falls below the left atrial pressure, and the blood from left atrium enters the left ventricle.Later, as the blood continues to flow into the left ventricle, the pressure in both chambers tends to equalize.At the end of the di astole, left atrial contractions cause an increase in left atrial pressure, thus again creating a pressure gradient between the left atrium and ventricle and forcing blood into the left ventricle.Ventricular systole begins with the contraction of the left ventricle, which is caused by the spread of an action potential over the left ventricle. The contraction of the left ventricle causes an increase in the left ventricular pressure. When this pressure is higher than the left atrial pressure, the mitral valve is closed abruptly.The left ventricular pressure continues to rise after the mitral valve is closed. When the left ventricular pressure rises above the pressure in the aorta, the aortic valve opens. This period between the closure of the mitral valve and the opening of the aortic valve is called isovolumetric contraction phase.The blood ejects out of the left ventricle and into the aorta once the aortic valve is opened. As the left ventricular contraction is continued, 2 processe s lead to a fall in the left ventricular pressure. These include a decrease in the strength of the ventricular contraction and a decrease in the volume of blood in the ventricle.When the left ventricular pressure falls below the aortic pressure, the aortic valve is closed. After the closure of the aortic valve, the left ventricular pressure falls rapidly as the left ventricle relaxes. When this pressure falls below the left atrial pressure, the mitral valve opens and allows blood to enter left ventricle. The period between the closure of the aortic valve closure and the opening of the mitral valve is called isovolumetric relaxation time. Right-sided heart chambers undergo the same phases simultaneously. Most of the work of the heart is completed when ventricular pressure exists. The greater the ventricular pressure, the greater the workload of the heart. Increases in BP dramatically increase the workload of the heart, and this is why hypertension is so harmful to the heart.Arterial BP is the pressure that is exerted against the walls of the vascular system. BP is determined by cardiac output and peripheral resistance. Arterial pressure can be estimated using a sphygmomanometer and a stethoscope. The reference range for males is 120/80 mm Hg; the reference range for females is 110/70 mm Hg. The difference between systolic and diastolic pressure is called the pulse pressure. The average pressure during a cardiac cycle is called the mean arterial pressure (MAP). MAP determines the rate of blood flow through the systemic circulation.During rest, MAP = diastolic BP + (0.33 X pulse pressure). For example, MAP = 80 + (0.33 X [120-80]), MAP = 93 mm Hg. During exercise, MAP = diastolic BP + (0.50 X pulse pressure). For example, MAP = 80 + (0.50 X [160-80]), MAP = 120 mm Hg. The heart has the ability to generate its own electrical activity, which is known as intrinsic rhythm. In the healthy heart, contraction is initiated in the sinoatrial (SA) node, which is often called the hearts pacemaker. If the SA node cannot set the rate, then other tissues in the heart are able to generate an electrical potential and establish the HR.The parasympathetic nervous system and the sympathetic nervous system affect a personsHR. Parasympathetic nervous system: The vagus nerve originates in the medulla and innervates the SA and AV nodes. The nerve releases ACh as the neurotransmitter. The response is a decrease in SA node and AV node activity, which causes a decrease in HR. Sympathetic nervous system: The nerves arise from the spinal cord and innervate the SA node and ventricular muscle mass. The nerves release norepinephrine as the neurotransmitter. The response is an increase in HR and a force of contraction of the ventricles.At rest, sympathetic and parasympathetic ne rvous stimulation are in balance. During exercise, parasympathetic stimulation decreases and sympathetic stimulation increases. Several factors can alter sympathetic nervous system input.Baroreceptors are groups of neurons located in the carotid arteries, the arch of aorta, and the right atrium. These neurons sense changes in pressure in the vascular system. An increase in BP results in an increase in parasympathetic activity except during exercise, when the sympathetic activity overrides the parasympathetic activity. Chemoreceptors are groups of neurons located in the arch of the aorta and the carotid arteries. These neurons sense changes in oxygen concentration. When oxygen concentration in the blood is decreased, parasympathetic activity decreasesand sympathetic activity increases. Temperature receptors are neurons located throughout the body. These neurons are sensitive to changes in body temperature. As temperature increases, sympathetic activity increases to cool Effects of Exercise on the Human Body Effects of Exercise on the Human Body Exercise represents one the highest levels of extreme stresses to which the body can be exposed. Exercise physiology is the study of the function of the human body during various acute and chronic exercise conditions. These effects are significant during both short, high intensity exercise as well as with prolonged strenuous exercise such as done in endurance sports like marathons, ultramarathons, and road bicycle racing. In exercise, the liver generates extra glucose, while increased cardiovascular activity by the heart, and respiration by the lungs, provides an increased supply of oxygen. When exercise is very prolonged and strenuous, a decline, however, can occur in blood levels of glucose. In some individuals, this might even cause hypoglycemia and hypoxemia. There can also be cognitive and physical impairments due to dehydration. Another risk is low plasma sodium blood levels. Prolonged exercise is made possible by the human thermoregulation capacity to remove exercise waste hea t by sweat evaporation. This capacity evolved to enable early humans after many hours of persistence hunting to exhaust game animals that cannot remove so effectively exercise heat from their body. In general, the exercise-related measurements established for women follow the same general principles as those established for men, except for the quantitative differences caused by differences in body size, body composition, and levels of testosterone. In women, the values of muscle strength, pulmonary ventilation, and cardiac output (all variables related with muscle mass) are generally 60-75% of the exercise physiology values recorded in men. When measured in terms of strength per square centimeter, the female muscle can achieve the same force of contraction as that of a male. The functions of muscle tissues assume roles in homeostasis, as follows: Excitability Property of receiving and responding to stimuli such as the following: Neurotransmitters: Acetylcholine (ACh) stimulates skeletal muscle to contract, electrical stimuli: Applying electrical stimuli between cardiac and smooth muscle cells causes the muscles to contract, Applying a shock to skeletal muscle causes contraction, Hormonal stimuli: Oxytocin stimulates smooth muscle in the uterus to contract during labor.Contractility Ability to shorten. Extensibility Ability to stretch without damageElasticity Ability to return to original shape after extensionThrough contraction, muscle provides motion of the body (skeletal muscle), motion of blood (cardiac muscle), and motion of hollow organs such as the uterus, esophagus, stomach, intestines, and bladder (smooth muscle).Muscle tissue also helps maintain posture and produce heat. A large amount of body heat is produced by metabolism and by muscle con traction. Muscle contraction during shivering warms the body. Skeletal muscle consists of fibers (cells). These cells are up to 100 Ã µm in diameter and often are as long as the muscle. Each contains sarcoplasm (cytoplasm) and multiple peripheral nuclei per fiber. Skeletal muscle is actually formed by the fusion of hundreds of embryonic cells. Other cell structures include the following:Each fiber is covered by a sarcolemma (plasma membrane). The sarcoplasmic reticulum (smooth endoplasmic reticulum) stores calcium, which is released into the sarcoplasm during muscle contraction. Transverse tubules (T tubules), which are extensions of the sarcolemma that penetrate cells, transmit electrical impulses from the sarcolemma inward, so electrical impulses penetrate deeply into the cell. Besides conducting electricity along their walls, T tubules contain extracellular fluid rich in glucose and oxygen.The sarcoplasm of fiber is rich in glycogen (glucose polymer) granules and myoglobin (oxygen-storing protein). It also is rich in mitochondria. Each fibe r contains hundreds to thousands of rodlike myofibrils, which are bundles of thin and thick protein chains termed myofilaments. From a cross-sectional view of a myofibril, each thick filament is surrounded by a hexagonal array of 6 thin filaments. Each thin filament is surrounded by a triangular array of thick filaments.myofilaments are composed of 3 proteins: actin, tropomyosin, and troponin. Thick myofilaments consist of bundles of approximately 200 myosin molecules. Myosin molecules look like double-headed golf clubs (both heads at the same end). The heads of the golf clubs are called myosin heads; they are also called cross-bridges because they link thick and thin filaments during contraction. They contain actin andadenosine triphosphate (ATP) binding sites. Myosin heads project out from the thick filaments, allowing them to bind to the thin filaments during contraction. Actin is a long chain of multiple globular proteins, similar in shape to kidney beans. Each globular subunit contains a myosin-binding site. Tropomyosin is a long strand of protein that covers the myosin-binding sites on actin when the muscle is relaxed. Troponin is a polypeptide complex that binds to tropomyosin, helping to position it over the myosin-binding sites on actin. During muscle contraction, calcium binds troponin, which causes tropomyosin to roll off of the myosin binding sites on actin. A muscle action potential travels over sarcolemma and enters the T tubules, causing the sarcoplasmic reticulum to release calcium into the sarcoplasm. This triggers the contractile process.Myosin cross-bridges pull on the actin myofilaments, causing the thin myofilaments of a sarcomere to slide toward the centers of the H zones.Deep fascia is a broad band of dense irregular connective tissue beneath and around muscle and organs. Deep fascia is different from superficial fascia, which is loose areolar connective tissue.Other connective-tissue components (all are extensions of deep fascia) include epimysium, which covers the entire muscle; perimysium, which penetrates into muscle and surrounds bundles of fibers called fascicles; and endomysium, which is delicate, barely visible, loose areolar tissue covering individual fibers (ie, individual cells).Tendons and aponeuroses are tough extensions of epimysium, perimysium, and endomysium. Tendons and aponeuroses are made of dense regular co nnective tissue and attach the muscle to bone or other muscle. Aponeuroses are broad, flat tendons. Tendon sheaths contain synovial fluid and enclose certain tendons. Tendon sheaths allow tendons to slide back and forth next to each other with lower friction. Tenosynovitis is inflammation of the tendon sheaths and tendons, especially those of the wrists, shoulders, and elbows. Tendons are not contractile and not very stretchy; furthermore, they are not very vascular and they heal poorly. Nerves convey impulses for muscular contraction. Nerves are bundles of nerve cell processes. Each nerve cell process (ie, axon) divides at its tip into a few to 10,000 branches called telodendria. At the end of each of these branches is an axon terminal that is rich in neurotransmitters.Blood provides nutrients and oxygen for contraction. An artery and a vein usually accompany a nerve that penetrates skeletal muscle. Arteries in muscles dilate during active muscular activity, thus increasing the supply of oxygen and glucose.A motor nerve is a bundle of axons that conducts nerve impulses away from the brain or spinal cord toward muscles. Each axon transmits an action potential (ie, nerve impulse), which is a burst of electricity. The nerve impulse travels along the axons at a steady rate, like fire travels along a fuse; however, nerve impulses travel extremely fast. Each axon has 4-2000 or more branches (ie, telodendria), with an average of 150 telodendria. Each separate branch suppli es a separate muscle cell. Thus, if an axon has 10 branches, it supplies 10 muscle fibers. Small motor units are for fine control of muscles; large motor units are for muscles that do not require such fine control.The neuromuscular junction is made of an axon terminal and the portion of the muscle fiber sarcolemma it nearly touches (called the motor endplate). The neurotransmitter released at the neuromuscular junction in skeletal muscle is ACh. The motor endplate is rich in thousands of ACh receptors; the receptors are integral proteins containing binding sites for ACh and sodium channels. Nerve impulse (action potential) reaches the axon terminal, which triggers calcium influx into the axon terminal.Calcium influx causes synaptic vesicles to release ACh via exocytosis. ACh diffuses across synaptic cleft.ACh binds to theACh receptor on the sarcolemma. Succinylcholine, a drug used to induce paralysis during surgery, binds to ACh receptors more tightly than ACh. Succinylcholine initially causes some depolarization, but then itbinds to the receptor, preventing ACh from binding. Therefore, it blocks the muscles stimulation by ACh, causing paralysis. Another drug that acts in a similar fashion is curare. These drugs do not cause pain relief or unconsciousness; thus, they are combined with other drugs during surgery. When ACh binds the receptor, it opens chemically regulated ion channels, which are sodium channels through the receptor molecule. Sodium, which is in high concentration outside cells and in low concentration inside cells, rushes into the cell through the channels.The cell, whose resting membrane potential along the inside of the membrane is negative when comparedwith the outside of the membrane, becomes positively charged along the inside of the membrane when sodium (a positive ion) rushes in. This change from a negative charge to a positive charge along the inner membrane is termed depolarization. The depolarization of one region of the sarcolemma (the motor endplate) initiates an action potential, which is a propagating wave of depolarization that travels (propagates) along the sarcolemma. Regions of membrane that become depolarized rapidly restore their proper ionic concentrations along their inner and outer surfaces in a process termed repolarization. (This process of depolarization, propagation, and repolarization is similar to dominoes that topple each other but also spring back into the upright position shortly afterward.)The action potential also propagates along the membrane lining the T tubules entering the cell. This action potential traveling along the T tubules causes the sarcoplasmic reticulum to release calcium into sarcoplasm.Calcium binds with troponin, causing it to pull on tropomyosin to change its or ientation, exposing myosin-binding sites on actin. An ATPase, which also functions as a myosin cross-bridging protein, splits ATP into adenosine diphosphate (ADP) + phosphate (P) in the previous contraction cycle. This energizes the myosin head. The energized myosin head, or cross-bridge, combines with myosin-binding sites on actin. Power stroke occurs. The attachment of the energized cross-bridge triggers a pivoting motion (ie, power stroke) of the myosin head. During the power stroke, ADP and P are released from the myosin cross-bridge. The power stroke causes thin actinmyofilaments to slide past thick myosin myofilaments toward the center of the A bands.ATP attaches to the myosin head again, allowing it to detach from actin. (In rigor mortis, an ATP deficiency occurs. Cross-bridges remain, and the muscles are rigid.)ATP is broken down to ADP and P, which cocks the myosin head again, preparing it to perform another power stroke if needed. Repeated detachment and reattachment of the cross-bridges results in shortening without much increase in tension during the shortening phase (isotonic contraction) or results in increased tension without shortening (isometric contraction).Release of the enzyme acetylcholinesterasein the neuromuscular junction destroys ACh and stops the generation of a muscle action potential. Calcium is taken back up (resequestered) in the sarcoplasmic reticulum, and myosin cross-bridges separate. ATP is required to separate myosin-actin cross-bridges. The muscle fiber resumes its resting state. The chemical energy that fuels muscular activities is ATP. For the first 5 or 6 seconds of muscle power, muscular activity can depend on the ATP that is already present in the muscle cells. Beyond this time, new amounts of ATP must be formed to enable the activation of muscular contractions that are needed to support longer and more vigorous physical activities. For activities that require a quick burst of energy that cannot be supplied by the ATP present in the muscle cells, the next 10-15 seconds of muscle power can be provided through the bodys use of the phosphagen system, which uses a substance called creatine phosphate to recycle ADP into ATP.4 For longer and more intense periods of physical activity, the body must rely on systems that break down the sugars (glucose) to produce ATP. The complete breakdown of glucose occurs in 2 ways: through anaerobic respiration (does not use oxygen) and through aerobic respiration (occurs in the presence of oxygen). The anaerobic use of gluco se to form ATP occurs as the body increases its muscle use beyond the capability of the phosphagen system to supply energy. In particular, the glycogen lactic acid system, through its anaerobic breakdown of glucose, provides approximately 30-40 seconds more of maximal muscle activity. For this system, each glucose molecule is split into 2 pyruvic acid molecules, and energy is released to form several ATP molecules, providing the extra energy. Then, the pyruvic acid partially breaks down further to produce lactic acid. If the lactic acid is allowed to accumulate in the muscle, one experiences muscle fatigue. At this point, the aerobic system must activate.The aerobic system in the body is used for sports that require an extensive and enduring expenditure of energy, such as a marathon race. Endurance sports absolutely require aerobic energy. A large amount of ATP must be provided to muscles to sustain the muscle power needed to perform such events without an excessive production of la ctic acid. This can only be accomplished when oxygen in the body is used to break down the pyruvic acid (that was produced anaerobically) into carbon dioxide, water, and energy by way of a very complex series of reactions known as the citric acid cycle. This cycle supports muscle usage for as long as the nutrients in the body last. The breakdown of pyruvic acid requires oxygen and slows or eliminates the accumulation of lactic acid. In summary, the 3 different muscle metabolic systems that supply the energy required for various activities are as follows: Phosphagen system (for 10- to 15-sec bursts of energy)Glycogen lactic acid system (for another 30-40 sec of energy)Aerobic system (provides a great deal of energy that is only limited by the bodys ability to supply oxygen and other important nutrients) Many sports require the use of a combination of these metabolic systems. By considering the vigor of a sports activity and its duration, one can estimate very closely which of the ene rgy systems are used for each activity. During muscular exercise, blood vessels in muscles dilate and blood flow is increased in order to increase the available oxygen supply. Up to a point, the available oxygen is sufficient to meet the energy needs of the body. However, when muscular exertion is very great, oxygen cannot be supplied to muscle fibers fast enough, and the aerobic breakdown of pyruvic acid cannot produce all the ATP required for further muscle contraction. During such periods, additional ATP is generated by anaerobic glycolysis. In the process, most of the pyruvic acid produced is converted to lactic acid. Although approximately 80% of the lactic acid diffuses from the skeletal muscles and is transported to the liver for conversion back to glucose or glycogen, some lactic acid accumulates in muscle tissue, making muscle contraction painful and causing fatigue. Ultimately, once adequate oxygen is available, lactic acid must be catabolized completely into carbon dioxide and water. After exercise has stopped, extra oxygen is required to metabolize lactic acid; to replenish ATP, phosphocreatine, and glycogen; and to replace (pay back) any oxygen that has been borrowed from hemoglobin, myoglobin (an iron-containing substance similar to hemoglobin that is found in muscle fibers), air in the lungs, and body fluids. The additional oxygen that must be taken into the body after vigorous exercise to restore all systems to their normal states is called oxygen debt. The debt is paid back by labored breathing that continues after exercise has stopped. Thus, the accumulation of lactic acid causes hard breathing and sufficient discomfort to stop muscle activity until homeostasis is restored.5 Eventually, muscle glycogen must also be restored. Restoration of muscle glycogen is accomplished through diet and may take several days, depending on the intensity of exercise. The maximum rate of oxygen consumption during the aerobic catabolism of pyruvic acid is called maximal oxygen uptake. Maximal oxygen uptake is determined by sex (higher in males), age (highest at approximately age 20 y), and size (increases with body size). Highly trained athletes can have maximal oxygen uptakes that are twice that of average people, probably owing to a combination of genetics and training. As a result, highly trained athletes are capable of greater muscular activity without increasing their lactic acid production and have lower oxygen debts, which is why they do not become short of breath as readily as untrained individuals. The best examples of light exercise are walking and light jogging. The muscles that are recruited during this type of exercise are those that contain a large amount of type I muscle cells, and, because these cells have a good blood supply, it is easy for fuels and oxygen to travel to the muscle. ATP consumption makes ADP available for new ATP synthesis. The presence of ADP (and the resulting synthesis of ATP) simulates the movement of hydrogen (H+) into the mitochondria; this, in turn, reduces the proton gradient and thus stimulates electron transport. The hydrogen on the reduced form of nicotinamide adenine dinucleotide (NADH) is used up, nicotinamide adenine dinucleotide (NAD) becomes available, and fatty acids and glucose are oxidized. Incidentally, the calcium released during contraction stimulates the enzymes in the Krebs cycle and stimulates the movement of the glucose transporter 4 (GLUT-4) from inside of the muscle cell to the cell membrane. Both these exercise-induced respon ses augment the elevation in fuel oxidation caused by the increase in ATP consumption. An increase in the pace of running simply results in an increased rate of fuel consumption, an increased fatty acid release, and, therefore, an increase in the rate of muscle fatty acid oxidation. However, if the intensity of the exercise increases even further, a stage is reached in which the rate of fatty acid oxidation becomes limited. The reasons why the rate of fatty acid oxidation reaches a maximum are not clear, but it is possible that the enzymes in the beta-oxidation pathway are saturated (ie, they reach a stage in which their maximal velocity [Vmax] is less than the rate of acetyl-coenzyme A [acetyl-CoA] consumption in the Krebs cycle). Alternatively, it may be that the availability of carnitine (the chemical required to transport the fatty acids into the mitochondria) becomes limited. Whatever the reason, the consequence is that as the pace rises, the demand for acetyl-CoA cannot be met by fatty acid oxidation alone. The accumulation of acetyl-CoA that was so effective at inhibiting the oxidation of glucose is no longer present, so pyruvate dehydrogenase starts working again and pyruvate is converted into acetyl-CoA. In other words, more of the glucose that enters the muscle cell is oxidized fully to carbon dioxide. Therefore, the energy used during moderate exercise is derived from a mixture of fatty acid and glucose oxidation. As the intensity of the exercise increases even further (ie, running at the pace of middle-distance races), the rate at which the muscles can extract glucose from the blood becomes limited. In other words, the rate of glucose transport reaches Vmax, either because the blood cannot supply the glucose fast enough or the number of GLUT-4s becomes limited. ATP generation cannot be serviced completely by exogenous fuels, and ATP levels decrease. Not only does this stimulate phosphofructokinase, it also stimulates glycogen phosphorylase. This me ans that glycogen stored within the muscle cells is broken down to provide glucose. Therefore, the fuel mix during strenuous exercise is composed of contributions from blood-borne glucose and fatty acids and from endogenously stored glycogen.Being fit (biochemically speaking) means that the individual has a well-developed cardiovascular system that can efficiently supply nutrients and oxygen to the muscles. Fit people have muscle cells that are well perfused with capillaries (ie, they have a good muscle blood supply). Their muscle cells also have a large number of mitochondria, and those mitochondria have a high activity of Krebs cycle enzymes, electron transport carriers, and oxidation enzymes. Individuals who are unfit must endure the consequences of a poorer blood supply, fewer mitochondria, less electron transport units, a lower activity of the Krebs cycle, and poorer activity of beta-oxidation enzymes. To generate ATP in the mitochondria, a steady supply of fuel and oxygen and decent activity of the oxidizing enzymes and carriers are needed. If any of these components are lacking, the rate at which ATP can be produced by mitochondria is compromised. Under these circumstances, the production of ATP by aerobic means is not sufficient to provide the muscles with sufficient ATP to sustain contractions. The result is anaerobic ATP generation using glycolysis. Increasing the flux through glycolysis but not increasing the oxidative consumption of the resulting pyruvate increases the production of lactate. The purpose of respiration is to provide oxygen to the tissues and to remove carbon dioxide from the tissues. To accomplish this, 4 major events must be regulated, as follows: Pulmonary ventilation. Diffusion of oxygen and carbon dioxide between the alveoli and the blood, Transport of oxygen and carbon dioxide in the blood and body fluids and to and from the cells, Regulation of ventilation and other aspects of respiration: Exercise causes these factors to change, but the body is designed to maintain homeostasisWhen one goes from a state of rest to a state of maximal intensity of exercise, oxygen consumption, carbon dioxide formation, and total pulmonary and alveolar ventilation increase by approximately 20-fold. A linear relationship exists between oxygen consumption and ventilation. At maximal exercise, pulmonary ventilation is 100-110 L/min, whereas maximal breathing capacity is 150-170 L/min. Thus, the maximal breathing capacity is approximately 50% greater than the actual pulmon ary ventilation during maximal exercise. This extra ventilation provides an element of safety that can be called on if the situation demands it (eg, at high altitudes, under hot conditions, abnormality in the respiratory system). Therefore, the respiratory system itself is not usually the most limiting factor in the delivery of oxygen to the muscles during maximal muscle aerobic metabolism. VO2 max is the rate of oxygen consumption under maximal aerobic metabolism. This rate in short-term studies is found to increase only 10% with the effect of training. However, that of a person who runs in marathons is 45% greater than that of an untrained person. This is believed to be partly genetically determined (eg, stronger respiratory muscles, larger chest size in relation to body size) and partly due to long-term training. Oxygen diffusing capacity is a measure of the rate at which oxygen can diffuse from the alveoli into the blood. An increase in diffusing capacity is observed in a state of maximal exercise. This results from the fact that blood flow through many of the pulmonary capillaries is sluggish in the resting state. In exercise, increased blood flow through the lungs causes all of the pulmonary capillaries to be perfused at their maximal level, providing a greater surface area through which oxygen can diffuse into the pulmonary capillary blood. Athletes who require greater amounts of oxygen per minute have been found to have higher diffusing capacities, but the exact reason why is not yet known. Although one would expect the oxygen pressure of arterial blood to decrease during strenuous exercise and carbon dioxide pressure of venous blood to increase far above normal, this is not the case. Both of these values remain close to normal. Stimulatory impulses from higher centers of the brain and from joint and muscle proprioceptive stimulatory reflexes account for the nervous stimulation of the respiratory and vasomotor center that provides almost exactly the pr oper increase in pulmonary ventilation to keep the blood respiratory gases almost normal. If nervous signals are too strong or weak, chemical factors bring about the final adjustment in respiration that is required to maintain homeostasis. Regular exercise makes the cardiovascular system more efficient at pumping blood and delivering oxygen to the exercise muscles. Releases of adrenaline and lactic acid into the blood result in an increase of the heart rate (HR). Basic definitions of terms are as follows:VO2 equals cardiac output times oxygen uptake necessary to supply oxygen to muscles. The Fick equation is the basis for determination of VO2. Exercises increase some of the different components of the cardiovascular system, such as stroke volume (SV), cardiac output, systolic blood pressure (BP), and mean arterial pressure. A greater percentage of the cardiac output goes to the exercising muscles. At rest, muscles receive approximately 20% of the total blood flow, but during exercise, the blood flow to muscles increases to 80-85%. To meet the metabolic demands of skeletal muscle during exercise, 2 major adjustments to blood flow must occur. First, cardiac output from the heart must increase. Second, blood flow from ina ctive organs and tissues must be redistributed to active skeletal muscle. Generally, the longer the duration of exercise, the greater the role the cardiovascular system plays in metabolism and performance during the exercise bout. An example would be the 100-meter sprint (little or no cardiovascular involvement) versus a marathon (maximal cardiovascular involvement). The cardiovascular system helps transport oxygen and nutrients to tissues, transport carbon dioxide and other metabolites to the lungs and kidneys, and distribute hormones throughout the body. The cardiovascular system also assists with thermoregulation.The pumping of blood by the heart requires the following 2 mechanisms to be efficient:Alternate periods of relaxation and contraction of the atria and ventriclesCoordinated opening and closing of the heart valves for unidirectional flow of blood The cardiac cycle is divided into 2 phases: ventricular diastole and ventricular systole.This phase begins with the opening of the atrioventricular (AV) valves. The mitral valve (located between the left atrium and left ventricle) opens when the left ventricular pressure falls below the left atrial pressure, and the blood from left atrium enters the left ventricle.Later, as the blood continues to flow into the left ventricle, the pressure in both chambers tends to equalize.At the end of the di astole, left atrial contractions cause an increase in left atrial pressure, thus again creating a pressure gradient between the left atrium and ventricle and forcing blood into the left ventricle.Ventricular systole begins with the contraction of the left ventricle, which is caused by the spread of an action potential over the left ventricle. The contraction of the left ventricle causes an increase in the left ventricular pressure. When this pressure is higher than the left atrial pressure, the mitral valve is closed abruptly.The left ventricular pressure continues to rise after the mitral valve is closed. When the left ventricular pressure rises above the pressure in the aorta, the aortic valve opens. This period between the closure of the mitral valve and the opening of the aortic valve is called isovolumetric contraction phase.The blood ejects out of the left ventricle and into the aorta once the aortic valve is opened. As the left ventricular contraction is continued, 2 processe s lead to a fall in the left ventricular pressure. These include a decrease in the strength of the ventricular contraction and a decrease in the volume of blood in the ventricle.When the left ventricular pressure falls below the aortic pressure, the aortic valve is closed. After the closure of the aortic valve, the left ventricular pressure falls rapidly as the left ventricle relaxes. When this pressure falls below the left atrial pressure, the mitral valve opens and allows blood to enter left ventricle. The period between the closure of the aortic valve closure and the opening of the mitral valve is called isovolumetric relaxation time. Right-sided heart chambers undergo the same phases simultaneously. Most of the work of the heart is completed when ventricular pressure exists. The greater the ventricular pressure, the greater the workload of the heart. Increases in BP dramatically increase the workload of the heart, and this is why hypertension is so harmful to the heart.Arterial BP is the pressure that is exerted against the walls of the vascular system. BP is determined by cardiac output and peripheral resistance. Arterial pressure can be estimated using a sphygmomanometer and a stethoscope. The reference range for males is 120/80 mm Hg; the reference range for females is 110/70 mm Hg. The difference between systolic and diastolic pressure is called the pulse pressure. The average pressure during a cardiac cycle is called the mean arterial pressure (MAP). MAP determines the rate of blood flow through the systemic circulation.During rest, MAP = diastolic BP + (0.33 X pulse pressure). For example, MAP = 80 + (0.33 X [120-80]), MAP = 93 mm Hg. During exercise, MAP = diastolic BP + (0.50 X pulse pressure). For example, MAP = 80 + (0.50 X [160-80]), MAP = 120 mm Hg. The heart has the ability to generate its own electrical activity, which is known as intrinsic rhythm. In the healthy heart, contraction is initiated in the sinoatrial (SA) node, which is often called the hearts pacemaker. If the SA node cannot set the rate, then other tissues in the heart are able to generate an electrical potential and establish the HR.The parasympathetic nervous system and the sympathetic nervous system affect a personsHR. Parasympathetic nervous system: The vagus nerve originates in the medulla and innervates the SA and AV nodes. The nerve releases ACh as the neurotransmitter. The response is a decrease in SA node and AV node activity, which causes a decrease in HR. Sympathetic nervous system: The nerves arise from the spinal cord and innervate the SA node and ventricular muscle mass. The nerves release norepinephrine as the neurotransmitter. The response is an increase in HR and a force of contraction of the ventricles.At rest, sympathetic and parasympathetic ne rvous stimulation are in balance. During exercise, parasympathetic stimulation decreases and sympathetic stimulation increases. Several factors can alter sympathetic nervous system input.Baroreceptors are groups of neurons located in the carotid arteries, the arch of aorta, and the right atrium. These neurons sense changes in pressure in the vascular system. An increase in BP results in an increase in parasympathetic activity except during exercise, when the sympathetic activity overrides the parasympathetic activity. Chemoreceptors are groups of neurons located in the arch of the aorta and the carotid arteries. These neurons sense changes in oxygen concentration. When oxygen concentration in the blood is decreased, parasympathetic activity decreasesand sympathetic activity increases. Temperature receptors are neurons located throughout the body. These neurons are sensitive to changes in body temperature. As temperature increases, sympathetic activity increases to cool
Rochester Business Plan Essay -- essays research papers fc
A Marketing Plan to Retain Rochesterââ¬â¢s Youth à à à à à Rochesterââ¬â¢s 18-28 year old population has been leaving this city in mass amounts. This is common knowledge, and our plan is targeted towards the target audience in efforts to keep them here for a longer duration of time. à à à à à We feel that there are several beautiful attractions that make up the Greater Rochester Area of which this target audience is unaware. This marketing plan aims to get this market out into the suburbs and city of Rochester to see the diversity and unique options that our area provides. This will alleviate the negative stigma held by the 18-28 demographic by bringing to their attention the ample business and recreational opportunities available. We seek to build a stronger sense of community through interactions with businesses, local marketing campaigns, and more effective communication with this demographic. à à à à à With our creative and influential ideas we intend to retain Rochesterââ¬â¢s young adults so that the city will flourish with a new generation of hope. 1. Current Situationà à à à à à à à à à à à à à à à à à à à à à à à à à à à à à page 2 2. Target Audienceà à à à à à à à à à à à à à à à à à à à à à à à à à à à à à 3 3. SWOT 5 4. Trendsà à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à 6 5. Benchmark Citiesà à à à à à à à à à à à à à à à à à à à à à à à à à à à à à 7 6. Evidence à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à 9à à à à à à à à à à à à à à à 7. Marketing Objectives and Goalsà à à à à à à à à à à à à à &... ...nbsp;à $97,470à à à à à $126,080à à à à à $146,102 Mass Transità à à à à 10.50%à à à à à 36.70%à à à à à 3.30%à à à à à 1.80%à à à à à 2.80% Bike/Walkà à à à à 9.00%à à à à à 11.10%à à à à à 4.10%à à à à à 4.60%à à à à à 5.70% Sunny Daysà à à à à 170à à à à à 207à à à à à 171à à à à à 217à à à à à 213 Source: www.bestplaces.netà à à à à à à à à à à à à à à à à à à à Works Cited www.bestplaces.net www.cincinnati.com www.ci.rochester.com www.detnews.com www.dol.gov www.Menshealth.com NYSDOL-http://64.106.160.140:8080/lmi/index.html www.pittsburghlive.com http://www.rbj.net/PDF_Files/AnnualEst.pdf www.retainthebrains.com Mills, James Edward. ââ¬Å"Magnet Aims To Keep Young Professionals In Madison.â⬠Wisconsin State Journal, July 2004. http://www.madison.com
Tuesday, October 1, 2019
Was Ho Chi Minh More of a Nationalist Than a Communist?
Was Ho Chi Minh more of a nationalist than a communist? Most people in America firmly believe that Ho Chi Minh was a communist first and foremost. The public was inundated with stories of his visits to Russia and China. We heard repeatedly how his support from communist countries was being used to take over and create a communist stronghold in South East Asia. What we didnââ¬â¢t hear was the rest of the story. The Vietminh under Minhââ¬â¢s leadership had an alliance of sorts with the U. S. during WWII. The common enemy, the Japanese provided a sort of strange bedfellows situation where the communists supported the ouster of another foreign invader. After the war, the Vietminh set up governmental structures in the country assuming Vietnam would return to a sovereign state. Minh himself made repeated overtures to the U. S. and other countries for support in his quest of independence (Young, 1991. p 14). Even the Vietnam declaration of independence signaled Minhââ¬â¢s nationalistic view (Gettleman, et al, p 26). As a pragmatist, Minh realized that the U. S. as not going to support his independence so he turned towards Russia and China for support. Minh walked a fine line with these countries to keep his supply line open without losing his independence. Some say that ability showed his true skills as a diplomat (Obituary, 1969). On the flip side of the equation, Minh was a true and through communist. He lived and breathed the communist ideals and was ruthless in achieving them. It h as been said that he was a great contradiction. Ho Chi Minh was known as the great communist leader while at the same time ultimate nationalist (Ho Chi Minh, 2006). References Gettleman, M, Franklin, J, Young, M. & Franklin, B. (1995). Vietnam and America. Grove Press, New York, N. Y. Ho Chi Minh: North Vietnamese Leader (2006). Retrieved from http://www. historynet. com/ho-chi-minh-north-vietnam-leader. htm Ho Chi Minh Was Noted for Success in Blending Nationalism and Communism (Obituary) (1969. Retrieved from www. nytimes. com/learning/general/onthisday/bday/0519. html Young, M. (1991). The Vietnam Wars: 1945=1990. Harper Collins Publishers, New York N. Y.
Agenda Setting Theory. Summary
Agenda Setting Theory I. The original agenda: not what to think, but what to think about. A. Maxwell McCombs and Donald Shaw regard Watergate (American political scandal ââ¬â 1970ââ¬â¢s. It ended in President Nixon resigning from office) as a perfect example of the agenda-setting function of the mass media. B. They believe that the mass media have the ability to transfer the salience (importance) of items on their news agendas to the public agenda. II. A theory whose time had come. A. Agenda-setting theory contrasted with the prevailing selective exposure hypothesis, reaffirming the power of the press while maintaining individual freedom.Agenda-setting theory set to prove that we donââ¬â¢t have as much control over our beliefs as we would like to think. (selective exposure: says people know what they are interested in, and what they believe/find important. They choose to expose themselves to media sources that provide them with information that matches their interests and c onfirms their existing beliefs) B. The hypothesis predicts a cause-and-effect relationship between media content and voter perception, particularly a match between the mediaââ¬â¢s agenda and the publicââ¬â¢s agenda later on. causal relationships are different than correlational relationships ââ¬â note how the findings change between studies). III. Media agenda and public agenda: a close match. A. In their groundbreaking study, McCombs and Shaw first measured the media agenda. B. They established the position and length of story as the primary criteria of prominence (i. e. where it was in paper ââ¬â front page ââ¬â and how long of an article it was ââ¬â more writing equals more important (discourse makes meaning)) C. The remaining stories were divided into five major issues and ranked in order of importance. D.Rankings provided by uncommitted voters (uncommitted = undecided; these are people who have not made up their minds yet) matched closely with the mediaâ⠬â¢s agenda. IV. What causes what? A. McCombs and Shaw believe that the hypothesized agenda-setting function of the media causes the correlation between the media and public ordering of priorities. B. However, correlation does not prove causation. 1. A true test of the agenda-setting function must show that public priorities lag behind the media agenda. (this would prove that one comes before another and is the cause of the other) 2.McCombs and three other researchers demonstrated a time lag between media coverage and the public agenda during the 1976 presidential campaign. C. To examine whether the media agenda and the public agenda might just reflect current events (reality), Ray Funkhouser documented a situation in which there was a strong relationship between media and public agendas. The twin agendas did not merely mirror reality, but Funkhouser failed to establish a chain of influence from the media to the public. (this was the Vietnam War example) D.Shanto Iyengar, Mark Pet ers, and Donald Kinderââ¬â¢s experimental study confirmed a cause-and-effect relationship between the mediaââ¬â¢s agenda and the publicââ¬â¢s agenda. V. Who sets the agenda for the agenda setters? A. Some scholars target major news editors or ââ¬Å"gatekeepers. â⬠B. Others point to politicians and their spin-doctors. C. Current thinking focuses on public relations professionals. D. ââ¬Å"Interest aggregationsâ⬠are becoming extremely important. VI. Who is most affected by the media agenda? A. Those susceptible have a high need for orientation or index of curiosity. B.Need for orientation arises from high relevance and uncertainty. VII. Framing: transferring the salience of attributes. A. Throughout the last decade, McCombs has emphasized that the media influence the way we think. B. This process is called framing. 1. A media frame is the central organizing idea for news content that supplies a context and suggests what the issue is through the use of selection, emphasis, exclusion, and elaboration. 2. This definition suggests that media not only set an agenda but also transfer the salience of specific attributes to issues, events, or candidates. C. There are two levels of agenda setting. . The transfer of salience of an attitude object in the mass mediaââ¬â¢s pictures of the world to a prominent place among the pictures in our heads. (what to think about) 2. The transfer of salience of a bundle of attributes the media associate with an attitude object to the specific features of the image in our minds. (how to think about it) VIII. Not just what to think about, but how to think about it. A. Two national election studies suggest that framing works by altering pictures in the minds of people and, through the construction of an agenda with a cluster of related attributes, creating a coherent image.B. Salma Ghanemââ¬â¢s study of Texans tracked the second level of agenda setting and suggested that attribute frames have a compelling effec t on the public. C. Framing is inevitable. D. McCombs and Shaw now contend that the media may not only tell us what to think about, they also may tell us who and what to think about it, and perhaps even what to do about it. IX. Beyond opinion: the behavioral effect of the mediaââ¬â¢s agenda. A. Some findings suggest that media priorities affect peopleââ¬â¢s behavior. B. Nowhere is the behavioral effect of the media agenda more apparent than in the business of professional sports. C.McCombs claims ââ¬Å"Agenda setting the theory can also be agenda setting the business plan. â⬠D. Will new media continue to guide focus, opinions, and behavior? 1. The power of agenda setting that McCombs and Shaw describe may be on the wane. 2. The media may not have as much power to transfer the salience of issues or attributes as it does now as a result of usersââ¬â¢ expanded content choices and control over exposure. X. Critique: are the effects too limited, the scope too wide? A. McC ombs has considered agenda setting a theory of limited media effects. B. Framing reopens the possibility of a powerful effects model.C. Gerald Kosicki questions whether framing is relevant to agenda-setting research. 1. McCombsââ¬â¢ restricted definition of framing doesnââ¬â¢t address the mood of emotional connotations of a media story or presentational factors. 2. Although it has a straightforward definition within agenda-setting theory, the popularity of framing as a construct in media studies has led to diverse and perhaps contradictory uses of the term. D. Agenda-setting research shows that print and broadcast news prioritize issues. E. Agenda-setting theory reminds us that the news is stories that require interpretation.
Subscribe to:
Posts (Atom)